stem cell research offers the greatest hope for medical advances we have ever known. The research frontier of the 21st century, it holds the promise of cures for neurodegenerative diseases such as ALS, Parkinson’s, Huntington’s and Alzheimer’s; autoimmune diseases like diabetes, lupus and rheumatoid arthritis; heart disease; cancer; blindness; spinal cord and other traumatic injuries. Yet continued federal funding limitations have dramatically slowed our progress toward the day when stem cells will lead us to cures.

Private philanthropy has never been more essential. It can push this groundbreaking science forward and it is nimble in ways that government and large academic institutions are not. Since 2005, The New York Stem Cell Foundation has used private funds to support stem cell scientists around the world, educate the public, and advance the most cutting-edge stem cell research in the NYSCF Laboratory, all to bring us closer to the cures we need.

NYSCF provides leadership and vital support for the most advanced forms of stem cell research – including human embryonic stem cell research – and performs and supports translational research focused directly on curing diseases. Two of the three most important breakthroughs in stem cell research in the past several years were supported by NYSCF, including the creation of the first patient-specific stem cell lines for ALS (Lou Gehrig’s disease) and the successful reprogramming of pancreatic cells. Experiments to create genetic models of types 1 and 2 diabetes, Parkinson’s and Alzheimer’s disease, and living bone with human embryonic stem cells are underway in the NYSCF Laboratory.

Please join with us in realizing the extraordinary promise of stem cell research. With your help, we can ensure that the science breaks through to find cures for the diseases affecting those we love.

Susan L. Solomon
Chief Executive Officer and Co-Founder

Roy Geronemus, MD
Chairman
THE NEW YORK STEM CELL FOUNDATION

OUR MISSION

The mission of The New York Stem Cell Foundation is to accelerate cures for the major diseases of our time through stem cell research.

OUR PROGRAMS

NYSCF Research
We support and enable the unrestricted pursuit of the most advanced stem cell research, both in our own laboratory and through collaborations with major medical research institutions.

NYSCF Innovators: Fellowship and Early Career Investigator Programs
We support and train the next generation of scientists doing innovative high-risk/high-reward work that translates research into cures.

NYSCF Conference and Symposia
We convene the preeminent annual translational stem cell research conference and an ongoing series of programs for scientists, policymakers and the public.

NYSCF – Robertson Prize
We honor the most significant achievement in stem cell research by an early career scientist.

An ambitious mission that needs comprehensive support.
THE UNIQUE APPROACH
OF THE NEW YORK
STEM CELL FOUNDATION

NYSCF’s goal is to advance research focused directly on curing disease. Its research is conducted in collaboration with eminent institutional partners, which include Albert Einstein College of Medicine, Columbia University Medical Center, Duke University, The Harvard Stem Cell Institute, Hebrew University of Jerusalem, Johns Hopkins Medical Center, Memorial Sloan-Kettering Cancer Center, The Mount Sinai School of Medicine, New York Blood Center, New York University School of Medicine, The Rockefeller University, The University of Pennsylvania, Weill Cornell Medical College, and the internationally renowned members of our Medical Advisory Board.

NYSCF concentrates on diseases where stem cell therapy shows the most promise. We have created research initiatives with a clearly focused clinical mandate to advance cures for diseases such as:

• Diabetes
• Multiple sclerosis, rheumatoid arthritis, and other auto-immune diseases
• Heart disease
• Cancer
• Spinal cord injury and other traumatic injury
• Bone regeneration
• Neuro-degenerative diseases, including Alzheimer’s, Parkinson’s, ALS (amyotrophic lateral sclerosis), SMA (spinal muscular atrophy), and Huntington’s
• Schizophrenia
• Blindness

“Without NYSCF our work would not be going forward as quickly as it is. It is a pleasure in life to work with people who are so focused on a mission and want to work together to achieve that goal.”

— DOUGLAS MELTON, PHD, CO-DIRECTOR, HARVARD STEM CELL INSTITUTE
ACCELERATING STEM CELL RESEARCH
NYSCF RESEARCH AND LABORATORY

NYSCF has established itself as a catalyst for the most advanced stem cell research in the United States. It has the scientific acumen to identify, initiate and fund critical experiments – those representing the “tipping points” in stem cell science. These are the experiments that will continue to change the way scientists and the public view what is possible in this burgeoning medical area.

There is an urgent need for scientists to engage in specialized, collaborative stem cell research, including research involving human embryonic stem cells. By creating initiatives in which investigators from NYSCF’s highly specialized stem cell derivation lab and a range of institutions can collaborate, NYSCF accelerates work in this critical field and capitalizes on outstanding scientific talent. NYSCF is nimble, small and independent, which allows it to respond quickly to research opportunities in a fast-changing field.

With private and state funding, NYSCF is not subject to any continuing federal restrictions on aspects of stem cell research, and it is free of the bureaucratic obstacles that can slow the progress of research in large academic institutions. Instead, NYSCF works in partnership with these institutions and helps to accelerate their research.

NYSCF’s state-of-the-art stem cell research laboratory opened its doors on March 1, 2006. The lab provides the opportunity for top stem cell researchers to conduct the most advanced stem cell science with a collaborative and translational focus. The lab has grown ten-fold, a clear confirmation of NYSCF’s success in fostering a culture of interaction that enables scientists to quickly and easily share results and strategies, which leads to new thinking and breakthroughs within and across diseases.

“Without funding from The New York Stem Cell Foundation and the creation of the NYSCF Lab, our research in this area would be impossible.”
— ROBIN GOLAND, MD, CO-DIRECTOR, THE NAOMI BERRIE DIABETES CENTER, COLUMBIA UNIVERSITY

“My research would be impossible if NYSCF had not stepped forward and created a lab in New York. NYSCF supports research to cure all diseases.”
— KEVIN C. EGGAN, PHD, NYSCF CHIEF SCIENTIFIC OFFICER AND HARVARD STEM CELL INSTITUTE

(left) Dr. Scott Noggle in the NYSCF Laboratory. (above) Dr. David Kahler and Dr. Caroline Marshall in the NYSCF Laboratory.
NYSCF INNOVATORS:
FELLOWSHIP PROGRAM

The New York Stem Cell Foundation has taken the lead in training and supporting a new generation of young scientists who innovate the stem cell technology that will revolutionize medicine. NYSCF Fellowships are offered to postdoctoral stem cell researchers to support their work at this critical juncture in the stem cell field.

The NYSCF Fellowship Program encourages the brightest junior scientists from preeminent institutions to pursue research in this vital field. Their projects range from growing bone tissue to developing ways to produce neurons for therapeutic treatment of Parkinson’s disease. In addition to an annual stipend, each NYSCF Fellow has access to NYSCF’s laboratory and presents at our annual conference.

Since its inception, the NYSCF Fellowship Program has created a community of more than 30 of the brightest researchers in the field. Formal and informal meetings with colleagues and mentors provide opportunities for the Fellows not only to share progress and information, but also to collaborate on projects.

The NYSCF Fellowship Program ensures that the next generation of researchers has the knowledge and expertise that will be required to lead their field as it grows.

Major support for the program comes from Fiona and Stan Druckenmiller.

Current NYSCF research includes:

- Continuing work on Dr. Kevin Eggan’s breakthrough development in generating cell lines from patients with ALS (Lou Gehrig’s disease), which is a major step toward understanding what causes the disease and finding ways to cure it.
- Creating human disease models to understand why and how diseases start, and to provide a novel route for identifying new and more effective drugs.
- Using stem cells to generate insulin-producing cells for type 1 and type 2 diabetes.
- Differentiation of human embryonic stem cells and induced pluripotent stem cells into nerve cells afflicted with Alzheimer’s disease through the Charles Evans Foundation Research Initiative and with support from the Alzheimer’s Drug Discovery Foundation and New York Community Trust.
- The NYSCF – Golub Stem Cell Research Initiative for Parkinson’s Disease to generate neurons from pluripotent stem cells dying from the disease.
- Using stem cells to create human models for studying the neurodegenerative effects of multiple sclerosis.
- Generating personalized human bone grafts for craniofacial reconstruction.
- Creation of a genetically diverse human stem cell bank for the development of personalized medicine.
- Developing methods for drug testing on human cell types affected by specific diseases in order to find safer and more effective treatments.
- An exciting array of innovative NYSCF postdoctoral fellowship and investigator research projects, ranging from the creation of liver tissue from embryonic stem cells to turning embryonic stem cells into blood vessels to repair diseased or damaged tissues.
The NYSCF Investigator Programs provide five years of critical seed funding to outstanding early career scientists, supporting them as they move beyond their postdoctoral training to establish their own, independent research.

The NYSCF Stem Cell Investigator Program supports scientists engaged in cutting-edge translational stem cell research with the potential to accelerate the path from bench to bedside. The NYSCF Neuroscience Investigator Program, launched in Spring 2011, fosters truly innovative neuroscience with the potential to transform our fundamental understanding of the brain and how it functions.

Through these innovative programs, NYSCF supports the most promising and creative young scientists, focusing on high-risk/high-reward projects, and builds on the success of the NYSCF Postdoctoral Fellowship Program.

Early support for the NYSCF Investigator Program was provided by The Leona M. and Harry B. Helmsley Charitable Trust. The program has been significantly expanded through the generosity of the Robertson Foundation.

The inaugural class of six Stem Cell Investigators was announced at NYSCF’s Annual Translational Stem Cell Research Conference in October of 2010. The inaugural class of Neuroscience Investigators was announced at NYSCF’s 2011 Conference.
NYSCF’S ANNUAL TRANSLATIONAL STEM CELL RESEARCH CONFERENCE

The New York Stem Cell Foundation’s Annual Translational Stem Cell Research Conference, held in October in New York City, is the preeminent forum for the leading minds in stem cell research from the United States and abroad. The conference convenes scientists, clinicians, policy leaders and advocates in a high-level discussion of the latest stem cell advances.

Conference sessions focus on particular diseases, including diabetes, cancer, blood, heart and muscles, neurodegeneration, and spinal cord and other traumatic injury, with an emphasis on how to take this critical research “from bench to bedside.” NYSCF’s Post-Doctoral Fellows present cutting-edge research in poster sessions.

The NYSCF conference is co-chaired by influential leaders in the field. Co-chairs have included Douglas A. Melton, PhD, Co-Director, Harvard Stem Cell Institute, Harvard University; John D. Gearhart, PhD, Director, Institute for Regenerative Medicine, University of Pennsylvania; and Nobel Laureates Harold Varmus, MD, Director, National Cancer Institute, and Paul Nurse, PhD, President, The Royal Society.

Conference participants have included:

- Anthony Atala MD Wake Forest Institute for Regenerative Medicine
- Ali Brivanlou PhD The Rockefeller University
- E. Edward Baetge PhD Nestle Institute of Health Sciences
- Mickie Bhatia PhD McMaster University, Canada
- R. Alta Charo JD University of Wisconsin at Madison
- Kenneth R. Chien MD, PhD Harvard Stem Cell Institute
- Pete Coffey PhD University College London, United Kingdom
- George Daley MD, PhD Harvard University
- John E. Dick PhD University of Toronto, Canada
- Elaine Fuchs PhD The Rockefeller University
- Kevin C. Eggn PhD Harvard Stem Cell Institute
- John D. Gearhart PhD The University of Pennsylvania
- Christopher Henderson PhD Columbia University
- Insoo Hyun PhD Case Western University
- Rudolph Jaenisch MD Massachusetts Institute of Technology
- Gordon Keller PhD McEwen Center for Regenerative Medicine, Canada
- Arnold R. Kriegstein MD, PhD University of California, San Francisco
- Story C. Landis PhD National Institutes of Health
- Ihor Lemishka PhD Mount Sinai School of Medicine
- Ruth Lehmann PhD New York University
- Angela McNab Human Fertilisation and Embryology Authority, United Kingdom
- Douglas A. Melton PhD Harvard Stem Cell Institute
- Sean J. Morrison PhD University of Michigan Center for Stem Cell Biology
- Christine Mummery PhD Hubrecht Institute, The Netherlands
- Alison Murdoch MD, FRCOG International Centre for Life, United Kingdom
- Paul Nurse PhD The Royal Society, United Kingdom
- Shahin Rafii MD Weill Cornell Medical College
- David Scadden MD Harvard Stem Cell Institute
- Allen M. Spiegel MD Albert Einstein College of Medicine
- Lorenz Studer MD Sloan-Kettering Institute for Cancer Research
- Harold Varmus MD National Cancer Institute
- Gordana Vunjak-Novakovic PhD Columbia University
- Amy Wagers PhD Harvard Stem Cell Institute
- Fiona Watt PhD Cambridge Research Institute, United Kingdom
- Irving Weissman MD, PhD Stanford Cancer Center
- Hynek Wichterle PhD Columbia University

(above) Conference Co-Chairs have included, from left: Douglas A. Melton PhD, Paul Nurse PhD, Harold Varmus MD, PhD, and John D. Gearhart, PhD.
NYSCF PANELS AND SYMPOSIA

The New York Stem Cell Foundation hosts a slate of ongoing panel discussions and symposia that drive new ideas and set the bar for translational research.

Scientific Meetings NYSCF holds symposia for top stem cell researchers, policy makers and other interested parties to provide opportunities for the regular exchange of ideas and information. The camaraderie and collaboration across institutional borders cultivated through these meetings has already led to substantial acceleration of research in this area.

A recent example was a meeting at which Dr. Harold Varmus, Nobel Laureate, Co-Chair of The President’s Council of Advisors on Science and Technology and Director of the National Cancer Institute, moderated a conversation with policymakers, scientists and NIH members on stem cell research under policies of the Obama Administration.

Public Outreach NYSCF’s public outreach programs help ensure that the general public has access to straightforward, accurate information about stem cell research and its great potential for advancing treatments and cures for disease.

Each spring, NYSCF hosts a panel that provides thoughtful, up-to-date discussion of the issues and challenges involved in stem cell research. Participants have included leading stem cell scientists and patient advocates such as Alexandra Reeve; Michael J. Fox, actor; Michael Kinsley, journalist; Dr. Kevin Eggan, NYSCF Chief Scientific Officer; the artist Chuck Close; Dr. Howard Fillit, Alzheimer’s Drug Discovery Foundation; Brooke Ellison, The Brooke Ellison Project; and Dr. Zach W. Hall, NYSCF Board Member and former President, California Institute for Regenerative Medicine.
What is a stem cell?
A stem cell is a cell that has the ability to renew itself and to develop into mature cells that make up all the tissues and organs in the human body. There are many types of stem cells.

What are embryonic stem cells?
Embryonic stem cells are early stage cells that are the only cells that can become any cell type in the body, such as a brain cell, blood cell, or heart cell; adult and cord blood stem cells cannot do this. Consequently, embryonic stem cells hold enormous potential for research because they can be used to model diseases in a Petri dish for drug discovery and cell replacement. Unlike adult stem cells, embryonic stem cells can grow indefinitely in culture in a dish, allowing scientists to create a limitless supply for research and therapeutic use.

These unique pluripotent stem cells come from blastocysts left over from infertility treatments that would otherwise be destroyed. A blastocyst is a microscopic clump of about 150 cells that are 5-7 days-old, long before a fetus would be formed.

A stem cell line is created by cultivating an early blastocyst in a Petri dish. Under these conditions, the cells continue to grow and grow, but they do not have the capacity to make an organism. However, they do retain the capacity to make all the independent cell types in the human body.

What are adult stem cells?
These cells are found in some of the body’s mature tissues. Unlike embryonic stem cells, adult stem cells can only make the limited types of cells found in the tissue in which they reside. So, for example, an adult stem cell from the liver can only make more liver cells.

What are cord blood stem cells?
Recovered at birth from the umbilical cord, these stem cells are similar to those found in adult bone marrow. They can give rise to all of the blood cells in our body and a few other cell types, but not all. The nerve cells from the brain, for instance, cannot be created from cord blood stem cells.

What is Somatic Cell Nuclear Transfer (SCNT)?
With SCNT, the genetic material or DNA of an un-fertilized, un-implanted egg is replaced with the genetic material from a patient’s cells. The patient’s DNA can be obtained, for example, from a simple skin biopsy and carries a particular disease (e.g. diabetes, Parkinson’s, ALS). This would allow the creation of patient/disease-specific stem cell lines that could be used in the laboratory to trace the development of complex genetic diseases, a process not possible in animal models. The importance of this new technology is that the cell lines would be genetically identical to the patient, and thus would dramatically reduce the risk of cell therapy rejection through the body’s immune response. However, while SCNT has been successful in animal cells, it remains a key research goal in human cells.

What are iPS (Induced Pluripotent Stem) cells?
iPS cells are produced by artificially “turning back the clock” of adult cells to a more embryonic-like, or pluripotent state. These cells have many of the characteristics of embryonic stem cells, but they are not identical. This breakthrough technology is very useful for research but does not, however, reduce the need for human embryonic stem cell research. It’s early, challenges remain, and their limitations are still unknown.

Why are reprogramming technologies important?
Reprogramming techniques, such as SCNT or iPS, allow pluripotent stem cell lines to be made from anyone, thus expanding enormously the genetic diversity of stem cell lines to reflect that of the human population. These lines can be used for scientific study of disease and for drug development.

Scientists agree that we need to keep moving forward on all fronts simultaneously if we want the best chance of curing disease.
Why is private support still needed for stem cell research? Private philanthropy can be nimble in ways that governments or large institutions cannot. NYSCF is free to put science first, which means that finding cures is its only priority. NYSCF’s goal is to enable the most innovative research, and to ensure that it takes place now.

Has the new Administration paved the way for federal funding of stem cell research? President Obama’s executive order opened the door to allowing the NIH to fund more embryonic stem cell research. However, key political and administrative hurdles remain that prevent critical federal dollars from being spent on the most advanced stem cell science. Even with a more supportive Administration in the White House, important Congressional and judicial obstacles remain, and will in all likelihood continue indefinitely. This was highlighted in August of 2010 when a federal judge issued an injunction blocking stem cell research using federal funds. Private funding is essential for the most innovative and promising stem cell science.

Are new, alternative sources of stem cells (cord blood stem cells, reprogrammed adult cells, etc.) making embryonic stem cells unnecessary? No. Embryonic stem cells remain the gold standard for research – they are the only cells that have been shown to be able to make all the cell types in the body. We need to pursue all avenues of research in order to have the best chance of finding treatments and cures for major diseases. NYSCF’s commitment is to all types of stem cell research, but embryonic stem cell research is our priority.

Why should I support NYSCF if I already give to a major medical research institution? A gift to NYSCF leverages your existing commitments to other medical research and academic organizations. NYSCF not only enables investigators from partner institutions to do specialized work in our laboratories, it specializes in creating cutting-edge techniques that accelerate all translational research in the field. NYSCF is like the “special operations” unit for other medical research institutions, helping them to move ahead faster, more effectively and more cost-efficiently.
NYSCF’s Board of Directors is made up of leaders in medicine, the arts and business. Their talents and experience, combined with an unwavering commitment to advancing stem cell research, guide the Foundation in realizing its mission.

Roy Geronemus MD, Chairman
Susan L. Solomon, CEO
Marilyn G. Breslow
Karen E. Burke MD, PhD
David A. Carmel
Chuck Close
Alan M. Cohen
John L. Eastman
Carol B. Einiger
Paul Goldberger
Zach W. Hall PhD
Deborah H. Kahn
Richard J. Massey PhD
David Mitnick
Mary Elizabeth Bunzel Emeritus
Janet Felleman Emeritus

NYSCF’s Leadership Council includes individuals who are committed to funding and promoting the Foundation’s mission to accelerate stem cell research. They are our valued ambassadors.

Robert Bookman
Russell L. Carson
Chuck Close
Shirley Cook
Fiona Druckenmiller
Jodie and John Eastman
Barbara Fleischman
Frank Gehry
Lawrence E. Golub
and Karen Finerman
April Gornik
Paul Healy
Marlene Hess
Richard D. Kaplan
Dorothy Lichtenstein
Julian Robertson, Jr.
Eric A. Rose MD
Jack Rudin
Stephanie and Fred Shuman
Alice Shure
John C. Whitehead
Noelle and Dick Wolf

(opposite page) clockwise from top left: Dick and Noelle Wolf, Marlene Hess, Julian Robertson, Carol B. Einiger; Mayor Michael R. Bloomberg and Susan L. Solomon, Alice Shure, Dr. Karen E. Burke and Dr. Roy Geronemus, Lawrence Golub, and John Eastman.
The New York Stem Cell Foundation’s Business Council is comprised of leaders from biotechnology, pharmaceutical and venture capital companies who share the Foundation’s vision and mission to advance stem cell research.

NYSCF understands the critical importance of creating partnerships with industry to further this innovative research. The Business Council assists NYSCF in developing strategies for working with the private sector to advance stem cell research, establishing collaborations with industry partners to maximize the possibilities of developing therapeutics derived from research supported by NYSCF.

Scott Bruder MD, PhD Senior Vice President and Chief Technology Officer, Becton Dickinson
Eli Casdin Casdin Capital
Ashley Dombkowski PhD Chief Business Officer, 23andMe
Geoff Duyk MD, PhD Partner, TPG Biotech LLC
Corey Goodman PhD Managing Director, venBio LLC
Mahendra Rao MD, PhD Director, NIH Center for Regenerative Medicine
Lee Rubin PhD Director of Translational Research, Harvard Stem Cell Institute, and NYSCF Scientific Advisor
George Scangos PhD President and Chief Executive Officer, Exelixis
Richard Scheller PhD Executive Vice President, Research, and Chief Scientific Officer, Genentech
Joop Sistermans Former Executive Vice President, Akzo Nobel
Patrick Vallance MD, PhD Senior Vice President of Drug Discovery, GlaxoSmithKline
Asa Abeliovich MD, PhD Associate Professor; Pathology and Neurology, the Taub Institute for Aging, Columbia University.
Ali H. Brivanlou PhD Professor and Head of Laboratory, Laboratory of Molecular Embryology, The Rockefeller University.
Moses V. Chao PhD Professor; Cell Biology, Physiology and Neuroscience; Co-Coordinator, Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, NYU School of Medicine.
Dennis S. Charney MD Anne and Joel Ehrenkranz Dean; Executive Vice President for Academic Affairs; Professor; Departments of Psychiatry, Neuroscience, and Pharmacology & Systems Therapeutics, The Mount Sinai School of Medicine.
Chi Van Dang MD, PhD Vice Dean for Research; Professor of Medicine, Pathology, Oncology, and Cell Biology, The Johns Hopkins University School of Medicine.
Valina Dawson PhD Professor and Vice-Chair; Departments of Neurology, Neuroscience, Physiology and Cell and Molecular Medicine, The Johns Hopkins University School of Medicine.
Kevin C. Eggan PhD* Associate Professor; Stem Cell and Regenerative Biology, Harvard University. Assistant Investigator, Stowers Medical Institute. MacArthur Fellow (2006), and NYSCF Chief Scientific Officer.
Gerald D. Fischbach MD Scientific Director; Simons Foundation Autism Project. Dean, Faculty of Health Sciences and Medicine, Emeritus, and John E. Borne Professor; Columbia University.
Gordon Fishell PhD Professor; Department of Cell Biology, NYU Medical Center
Paul S. Frenette MD Director; Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research; Professor; Departments of Medicine and Cell Biology, Albert Einstein College of Medicine.
Elaine Fuchs PhD Rebecca C. Lancefield Professor of Mammalian Cell Biology & Development, The Rockefeller University. Investigator, Howard Hughes Medical Institute.
John D. Gearhart PhD Director; Institute for Regenerative Medicine; Professor; School of Medicine; Professor; School of Veterinary Medicine; Penn Integrates Knowledge Professor; University of Pennsylvania.
Robin Goland MD Founder and Co-Director; The Naomi Berrie Diabetes Center; Associate Professor; Columbia University Medical Center.

Lee Goldman MD, MPH Executive Vice President, Health and Biomedical Sciences; Dean, Faculties of Health Sciences and Medicine, the College of Physicians and Surgeons, Columbia University.
Steven A. Goldman MD, PhD Edward A. and Alma Vollertsen Rykenboer Chair; Neurophysiology and Professor of Neurology and Neurosurgery, University of Rochester Medical Center.
Antonio M. Gotto, Jr. MD, DPhil Suzanne and Stephen Weiss Dean, Professor of Medicine and Provost for Medical Affairs, Weill Cornell Medical College.
James Grifo MD, PhD Director, Division of Reproductive Endocrinology and Professor, Obstetrics and Gynecology, School of Medicine, New York University. Attending Physician, Department of Obstetrics and Gynecology, Tisch Hospital.

Zach W. Hall PhD* Former President, The California Institute of Regenerative Medicine, and former Director, National Institute of Neurological Disorders and Stroke.

Thomas M. Jessell PhD Claire Tow Professor of Biochemistry & Molecular Biophysics, Columbia University. Investigator, Howard Hughes Medical Institute.

Robert S. Kass PhD Vice Dean for Research, Professor and Chairman, Department of Pharmacology, Columbia University

Gordon Keller PhD Director, McEwan Center for Regenerative Medicine University Health Network.

Ruth Lehmann PhD Professor, Development Genetics, and Investigator, Skirball Institute of Biomolecular Medicine, NYU School of Medicine. Investigator, Howard Hughes Medical Institute.

Rudolph Leibel MD* Co-Director, The Naomi Berrie Diabetes Center, Columbia University. Professor, Pediatrics and Medicine, and head, Division of Molecular Genetics, Columbia University College of Physicians and Surgeons.

Ihor Lemischka PhD Professor, Gene and Cell Medicine, Mount Sinai School of Medicine.

Haifan Lin PhD Professor, Cell Biology; Director, Yale Stem Cell Center; Yale School of Medicine.

Dan R. Littman MD, PhD Helen L. and Martin S. Kimmel Professor of Molecular Immunology, and Professor of Pathology and Microbiology, NYU School of Medicine.

Douglas A. Melton PhD* Co-Director, the Harvard Stem Cell Institute; Chair, Life Sciences Council, and Thomas Dudley Cabot Professor of Natural Sciences, Harvard University.

Christine Mummery PhD Professor, Developmental Biology and Chair, Department of Anatomy and Embryology, Leiden University Medical Center, Netherlands.

Mark Noble PhD Professor, Genetics, Neurobiology and Anatomy, University of Rochester Medical Center; Co-Director, New York Center of Research Excellence in Spinal Cord Injury.

Herbert Pardes MD President and CEO, New York-Presbyterian Hospital.

Shahin Rafii MD Arthur Belfer Professor of Genetic Medicine, and Director of The Ansary Center for Stem Cell Therapeutics, Weill Medical College, Cornell University. Investigator, the Howard Hughes Medical Institute.

Mahendra Rao MD, PhD Director, NIH Center for Regenerative Medicine.

Lee Rubin PhD* Director of Translational Medicine, Harvard University Stem Cell Institute; Department of Stem Cell and Regenerative Biology, Harvard University; and NYSCF Senior Scientific Advisor.

Allen M. Spiegel MD Marilyn and Stanley M. Katz Dean, Albert Einstein College of Medicine, Yeshiva University.

Lorenz Studer MD Associate Member, Developmental Biology Program and Division of Neurosurgery, Sloan-Kettering Institute.

Sally Temple PhD Scientific Director of the New York Neural Stem Cell Institute and Professor, Neuropharmacology and Neuroscience, Albany Medical College. MacArthur Fellow (2008).

Marc Tessier-Lavigne PhD President, The Rockefeller University.

Craig B. Thompson MD President and Chief Executive Officer, Memorial Sloan-Kettering Cancer Center.

Gordana Vunjak-Novakovic PhD Professor; Department of Biomedical Engineering, Columbia University.

Irving L. Weissman MD Director, Stanford Institute for Stem Cell Biology and Regenerative Medicine. Director, Ludwig Center; Professor, Pathology and Developmental Biology, Stanford University.

* Member, NYSCF Medical Advisory Board Executive Committee

(above from left to right) Christine Mummery PhD, Marc Tessier-Lavigne PhD, and Irving Weissman MD.
A CRITICAL PHILANTHROPIC OPPORTUNITY

The New York Stem Cell Foundation is the catalyst for essential, cutting-edge scientific research. It has a remarkable record of achievement. In its first six years, NYSCF has enabled some of the most important discoveries in the field, bringing us closer to the better treatments and cures we seek for a range of diseases, and it has set the agenda for innovative stem cell research.

NYSCF is unencumbered by the demands of an academic institution or a governmental body, and has created a model for improving institutional collaboration, linking researchers and resources based on the conviction that by working collaboratively, research can move most rapidly from lab bench to bedside. Because NYSCF specializes in the innovative techniques that advance all translational research in the field, a gift to NYSCF accelerates the work of a range of great health care and academic research institutions. And because NYSCF does not build buildings, a gift to NYSCF goes directly into scientific research, not bricks and mortar.

NYSCF is the best opportunity to assure that your investment in stem cell research will be directed where it is most urgently needed: toward cures for the devastating diseases that touch all of our lives.

For information on how you can support NYSCF, please contact Missy Falkenberg, Vice President of External Relations, at mfalkenberg@nyscf.org or 212.365.7434

NYSCF is a 501(c)(3) non-profit organization.
Tax ID #20-2905531

“The New York Stem Cell Foundation is a very important organization because the kinds of problems we’re trying to solve are far beyond the reach of any one investigator or laboratory, so we need cooperation across the universities to make progress in this area.”

— DOUGLAS A. MELTON, PHD, CO-DIRECTOR, HARVARD STEM CELL INSTITUTE
I applaud The New York Stem Cell Foundation for its efforts to increase support for embryonic stem cell research, and for encouraging collaborative partnerships to accelerate progress in this highly promising area of investigation. These studies may hold the key to curing many of the major diseases of our time, and I wholeheartedly endorse the Foundation’s mission and work.”

— PAUL NURSE, PHD, PRESIDENT, THE ROYAL SOCIETY OF LONDON AND FORMER PRESIDENT, THE ROCKEFELLER UNIVERSITY

(clockwise from upper left) Stan and Fiona Druckenmiller, Dorothy Lichtenstein, Chuck Close, Frank Gehry and Paul Goldberger; Richard J. Massey; Marilyn Breslow and David Carmel.